Files
crumbmissions/missions/robots/mond_maschine.meta.json
Branko May Trinkwald 3ee5214405 🌙🌈 Mond Maschine - Rainbow Predictor Mission!
"Vorhersagen heißt verstehen - Die Natur durch Code begreifen"

**Eine neue Computer Vision Mission!**

Inspired by: "Eine Mond Maschine die mir zeigt wann ich
regenbogen zählen kann?" 💚

**Was die Mond Maschine kann:**
- 🌙 Mond-Phasen tracken & berechnen
- 🌦️ Wetter-Daten analysieren (APIs)
- 📸 Computer Vision: Regenbogen detektieren (OpenCV)
- 🔮 Vorhersage-Algorithmus (ML Light)
- 🌈 Mondregenbogen! (Lunar Rainbow bei Vollmond)

**8 Phasen:**
1. Vision - Maya-Eule über Vorhersage vs Beobachtung
2. Das Dreieck - Daten-Struktur, Flow & Balance
3. Hardware - Kamera-Setup (Webcam/RasPi Cam)
4. Computer Vision - OpenCV & HSV-Farbraum
5. Daten-Integration - Wetter-API & Mond-Berechnung
6. Vorhersage-Algorithmus - Feature Engineering & Scoring
7. Visualisierung - ASCII Mond-Phasen & Dashboard
8. Mondregenbogen - Die magische Legende

**Alle 13 Waldwächter:**
- 🔺 Dreieck: DumboSQL, FunkFox, Taichi Taube
- 🔧 Hardware: CapaciTobi, Schnecki, Schraubbär
- 💻 Code: SnakePy (OpenCV!), PepperPHP, Spider
- 🔐 System: CrabbyRust, Vektor
- 🎨 Art: ASCII-Monster
- 🦉 Wisdom: Maya-Eule

**Learning Areas:**
- Computer Vision & OpenCV
- Image Processing (HSV color space)
- Weather API integration
- Astronomical calculations (moon phases)
- Machine Learning concepts
- Prediction algorithms
- Data visualization

**Hardware:**
- Kamera (USB Webcam / Raspberry Pi Camera)
- Optional: Wetterfestes Gehäuse für Outdoor
- Python + OpenCV + ephem

**Next Steps:**
pip install opencv-python numpy requests ephem

Die dritte Robot-Mission ist bereit! 🌙
Von Krümels Vision zur Mond Maschine! 💚

🤖 Generated with Claude Code
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-21 16:55:16 +01:00

66 lines
1.6 KiB
JSON

{
"icon": "🌙",
"title": "Mond Maschine - Rainbow Predictor",
"description": "Baue eine Maschine die Regenbogen vorhersagt! Mit Mond-Phasen, Wetter-Daten & Computer Vision.",
"category": "robots",
"difficulty": "advanced",
"duration_minutes": 35,
"requires_ai": true,
"enabled": true,
"author": "Crumbforest Team",
"version": "1.0",
"crew_involved": [
"mayaeule",
"dumbosql",
"funkfox",
"taichitaube",
"tobi",
"schnecki",
"schraubaer",
"snakepy",
"pepperphp",
"spider",
"crabbyrust",
"vektor",
"asciimonster"
],
"tags": [
"computer-vision",
"opencv",
"weather-api",
"moon-phases",
"machine-learning",
"prediction",
"camera",
"image-processing",
"astronomy"
],
"philosophy": "Vorhersagen heißt verstehen - Die Natur durch Code begreifen",
"learning_objectives": [
"Computer Vision Grundlagen (OpenCV)",
"Bildverarbeitung (HSV-Farbraum für Regenbogen)",
"Wetter-API Integration",
"Mondphasen-Berechnung",
"Pattern Recognition & Machine Learning",
"Zeitreihen-Analyse",
"Kamera-Setup & Bilderfassung",
"Vorhersage-Algorithmen",
"Data Visualization"
],
"prerequisites": [
"Python Grundkenntnisse",
"Interesse an Computer Vision",
"Optional: Kamera (Webcam oder Raspi Cam)"
],
"hardware_needed": [
"Kamera (USB Webcam oder Raspberry Pi Camera)",
"Optional: Wetterfester Gehäuse für Outdoor",
"Raspberry Pi oder Computer mit Python"
],
"references": [
"OpenCV Documentation",
"Weather API (OpenWeatherMap, Weatherstack)",
"Astronomy libraries (ephem, skyfield)"
]
}