Files
CrumbCodex-v.0.0/import tensorflow as tf.py
Krümel Branko 83df9de035 🌲 CrumbCodex v0.0 - Genesis
12 Monate Crumbforest-Wachstum, sortiert nach Waldlogik.

Struktur:
- 454 Dokumente in 7 organischen Ebenen
- Lichtung → Waldrand → Waldmitte → Wurzeln → Krone → Unterholz → Samen
- INDEX.md für jede Ebene (eigene Stimme)
- WALDKARTE.md (Master-Navigation)
- crumbcodex.md (Das Versprechen zwischen Krümel & Bits)
- lichtung/willkommen.md (Nullfeld-Einstieg für Kinder)

Philosophie:
- Waldlogik statt Ordnerlogik
- Tiefe, Licht, Wurzeln - wie ein echter Wald
- Schutz für Krümel, Tiefe für Gräber, Poesie für Atmende

Repos verbunden:
- OZM-Keks-Handbuch-v1 (Das Wissen)
- Crumb-Core-v.1 (Das Herz) - 194.164.194.191
- crumbmissions (Das Spiel)

Wuuuhuuuuu! 🦉
2025-12-26 16:50:52 +01:00

54 lines
1.4 KiB
Python

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
import os
# Datenpfad
data_dir = 'orchideen_data'
img_height, img_width = 224, 224
batch_size = 8
# Datengenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
validation_split=0.2
)
train_generator = train_datagen.flow_from_directory(
data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical',
subset='training'
)
val_generator = train_datagen.flow_from_directory(
data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical',
subset='validation'
)
# Modell
base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(64, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
# Basis-Modell einfrieren
for layer in base_model.layers:
layer.trainable = False
# Kompilieren und Trainieren
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_generator, validation_data=val_generator, epochs=10)
# Speichern
model.save('orchideen_model.h5')